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Abstract

Traffic grooming in WDM networks is obtained by intelligently allocating the traffic onto a given set of wavelengths. This paper presents

heuristics for grooming of non-uniform general traffic demands onto a given set of wavelengths available on a unidirectional or bidirectional

ring. The objective is to minimize the number of higher layer equipment, like SONET Add/DropMultiplexers (ADMs), or MPLS routers. We

map the unidirectional ring onto a linear topology and develop a generalized two-step approach to solve the grooming problem on the

mapped topology. In the first step, we allocate the traffic while minimizing the possible number of strings (each string being a collection of

non-overlapping traffic streams) in a manner that yields the optimal number of strings in the linear topology case. We also prove the

optimality of this step in the number of the strings (wavelengths). In the second step we employ a grouping technique to efficiently combine g

strings onto a wavelength while minimizing the total number of the ADMs. We also address the problem of grooming the non-uniform traffic

on a bidirectional ring by mapping it onto unidirectional rings, and applying the two-step approach. Moreover, in the case of bidirectional

rings we propose an approach to route the traffic that reduces the total number of the required wavelengths and ADMs. The time complexity

of our technique is at least an order of n less than other proposed approaches, where n is the total number of nodes in the network. The efficacy

of the proposed technique has been demonstrated through a large number of experiments.
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1. Introduction

During the last decade, Wavelength Division Multi-

plexing (WDM) networks have emerged as an attractive

architecture for backbone networks. WDM networks

provide high aggregate bandwidth, on the order of several

Terabits per second. Also, WDM networks eliminate the

electro-optic processing delays using wavelength routing

[1]. However, the cost-effectiveness of WDM networks

depends on the amount of the optical passthrough provided

by the network to the given traffic. The amount of the optical

passthrough in turn depends on the traffic pattern and on the

way the traffic between different source and destination
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pairs is groomed (multiplexed) on the available set of

wavelengths. Traffic grooming is thus defined as an

intelligent allocation of the traffic demands, between

different network nodes, onto an available set of wave-

lengths in such a way that reduces the overall cost of the

network.

WDM routing networks support lightpaths, which is a

pure optical communication path between two nodes. In

order to optimize the cost of the network, one needs to take

into account the higher layer that will use these lightpaths

and its connectivity patterns. The Synchronous Optical

Networks (SONET) is currently being used as a higher layer

in WDM networks, and because of its wide deployment and

efficient protection schemes will remain the most likely

option for some time.

In Fig. 1, a typical WDM network is shown with three

nodes. Each node is equipped with an Optical Add/Drop

Multiplexer (OADM), which can selectively add or drop

wavelengths at each node, thus providing an optical

passthrough to the rest of the wavelengths. Each of the

wavelengths dropped at a node is then processed by the

higher layers Add/Drop Multiplexers (ADMs), e.g. a
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Fig. 1. An example of an optical network with OADMs and ADMs.
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SONET ADM, after conversion into the electronic form.

Thus, the equipment needed at each node corresponds to the

number of wavelengths dropped at each node. To reduce

this number, and consequently the cost of equipment, one

needs to reduce the number of wavelengths dropped at a

node. We can achieve this goal by grooming the traffic in

such a way that all the traffic to and from a node is carried on

the minimum number of wavelengths.

As an example, consider a five-node linear topology

network, shown in Fig. 2. Let each node be equipped with an

OADM. Each OADM is in turn connected to a number of

SONET ADMs (not shown in the figure). Having an OADM

on each node will help only drop those wavelengths that

carry the traffic to, or from that specific node. A wavelength

can bypass a node if it carries no traffic that is transmitted or

received by that node. This will result in the saving of a

SONET ADM. Hence, our objective is to minimize the total

number of the SONET ADMs used in the network to

support all of the traffic by intelligently assigning traffic to

the wavelengths. Let g denote the total number of basic units

of traffic supported by each wavelength. For example, if a

wavelength supports an OC-12 connection, and the basic

unit of traffic is an OC-3, then gZ4. For illustrative purpose,

we assume that gZ2 in Fig. 2. Traffic demands or

connections are shown by the line segments between the

source and destination nodes. Also, black circles are used on
1 2 3
(a)

(b)

Fig. 2. Two different traffic assignments on a line
the edges of the segments to represent a SONET ADM that

is used at the corresponding node, and for a specific

wavelength. To minimize the total number of ADMs

required, out of many possibilities, we could have the

following two allocations of traffic to wavelengths.

(a) l1: 142, 344; l2: 145; l3: 244; l4: 245;

(b) l1: 142, 244; l2: 145; l3: 344; l4: 245;

Assignments (a) and (b) are shown in Fig. 2(a) and (b),

respectively. For the first assignment the total number of

required ADMs is 10, while for the second assignment the

total number of ADMs is 9. Note that in the second

assignment the traffic between nodes 1 and 2, and between 2

and 4 are sharing the same ADM. This example shows that

by assigning the traffic to appropriate wavelengths, one can

reduce the number of required ADMs. Also, given very high

cost of SONET ADMs, approximately $40,000 for a single

port version, even saving few ADMs translates into savings

of hundred thousands of dollars.
2. Related work

Traffic grooming in WDM networks is comparatively a

new field, and has recently started to receive attention.

Few survey papers have been published in this area [3–5].
4 5

ar topology, for the same traffic demands.
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The general problem of traffic grooming with arbitrary

traffic has been proven to be NP-Complete in [2]. Most of

the work related to traffic grooming in WDM networks has

an emphasis on reducing the number of required higher

layer components [4]. However, there are some notable

exceptions in which other factors, like the network

utilization, are optimized, e.g. [18,19]. Also, most of the

work focuses on the special cases of the traffic and the

specific network topologies. Many researchers focused on

obtaining the upper and lower bounds on the number of the

ADMs required for the specific topologies and traffic

patterns [2,6–9], while few researchers proposed problem-

specific heuristics [12,13]. In the grooming literature,

uniform traffic is defined as the same amount of traffic

between all possible source-destination node pairs, while

non-uniform traffic is defined as the variable amount of

traffic between different source-destination node pairs. For

traffic grooming problem, when traffic between different

node pairs is non-uniform, few studies exist [8,10,12,13].

Many of such studies consider only non-uniform symmetric

traffic, i.e. traffic from(to) a specific source to(from) a

specific destination is same.

In [2], the authors besides proving the NP-Completeness

of the problem, also provided algorithms to minimize the

number of the ADMs when the traffic from all nodes is

destined to a single node and all traffic rates are the same.

For the more general case of all-to-all uniform traffic, they

obtained a lower bound on the number of the ADMs

required and provide a heuristic to closely approach that

bound. Finally, they also considered the use of a hub node,

where the traffic can be switched between different

wavelengths, and obtain an optimal algorithm that mini-

mizes the number of the ADMs by efficiently multiplexing

and switching the traffic at the hub. In [6], the authors

considered six different optical WDM ring architectures.

They, then provide bounds on the number of the

wavelengths, number of the ADMs and maximum hop

length for each of the ring architectures. They also

considered three different traffic models, namely, Static,

Dynamic and Incremental, and calculated the bounds for

each of the proposed sixWDM ring architecture considering

some specific traffic model. In [7], the authors while

grooming the traffic considered the characteristics of the

SONET UPSR and BLSR rings. They presented the lower

bound on the number of the ADMs in a WDM UPSR ring,

under the uniform traffic assumptions. Also they considered

the single-hub UPSR WDM ring and obtained the bound on

the number of ADMs required in case of uniform traffic.

Similarly, they obtain the bounds on the number of ADMs

required for BLSR/2 WDM rings under the uniform traffic

assumption. In [8], the authors concentrated on the Single-

Hub SONET/WDM ring architecture and obtained bounds

on the number of the ADMs required under both uniform

and non-uniform traffic. They reduce the single hub traffic

grooming problem to the bin-packing problem, and hence

used the approximation algorithms for bin-packing to solve
the non-uniform traffic case in a near-optimal way. In [9],

the authors also focused on the WDM rings and obtained the

lower and the upper bounds by decomposing the ring into

sets of nodes and adopting the locally optimal topology

within each set. The optimal solutions obtained from sets of

nodes are then combined to get a near-optimal solution for

the whole ring. In [10], the authors consider the traffic

scenario in which traffic streams can exist between any

arbitrary pair of nodes. However, the demands between

same node pairs are considered to be symmetric. In [12], the

authors proposed few algorithms to achieve traffic grooming

in SONET/WDM rings, under both uniform and non-

uniform traffic. They followed a two-step approach, namely

circle construction and circle grooming. In the circle

construction phase they try to construct as few circles as

possible to include all the requested connections; this helps

to minimize the number of the wavelengths. In the circle

grooming phase they try to combine the circles in such a

way that the number of the ADMs used can be minimized.

In [13], the authors improved the work done in [12] by using

the simulated annealing to groom the circles.

Our contribution to the grooming problem is many-fold.

We develop a generic model that can accommodate general

non-uniform and asymmetric traffic with an arbitrary

number of nodes and arbitrary grooming factor. We devise

algorithms to solve the traffic grooming problem for our

generic model. The proposed algorithms scale well with the

problem size, and are efficient in terms of the solution

quality, and run time. Another contribution of our work is

that, in case of bidirectional rings, we demonstrate that the

shortest-path routing does not necessarily lead to minimiz-

ing the number of the wavelengths and the ADMs, and

propose an approach to route the traffic in a way that reduces

the total number of the required wavelengths and ADMs.

The rest of the paper is organized as follows. In Section 3

we map the unidirectional ring onto a linear topology and

present the two-step approach that solves the grooming

problem for non-uniform traffic. In Section 4 we map the

bidirectional rings onto a linear topology and also

investigate the different routing strategies. Section 5

presents several experimental results, while Section 6

concludes the paper.
3. Traffic grooming on unidirectional rings

In this section, we define the terms used in the rest of the

paper, and map the unidirectional ring onto a linear

topology. We then develop a two-step approach that handles

all types of traffic, uniform and non-uniform (including both

symmetric and asymmetric), on the mapped topology. We

also show that the first step of our approach is optimal in the

number of the wavelengths for a linear topology.

Let the total number of nodes be N, and let the traffic

matrix C be defined as, CZ[cij] such that 1%i%N and

1%j%N. Each cij entry is a set that represents the traffic
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Fig. 3. Mapping a unidirectional ring into linear topology. Nodes 6–9 are

the added dummy nodes corresponding to nodes 1–4.
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units between nodes i and j and consists of jcijjZnij number

of basic units of data, namely, cijZ fcð1Þij ; c
ð2Þ
ij ;.; c

ðnijÞ

ij g. We

call each such basic unit of data, cðkÞij , a stream or a

connection. Let r represent the rate of the basic stream, e.g.

an OC-3 connection. Our objective is to accommodate the

demands in the traffic matrix C with the least possible

number of wavelengths (W), and number of SONET ADMs

(D). In general, by reducing W, we will be able to reduce D,

since for each originating and terminating wavelength at a

node (in the same direction) we need an ADM. This,

however, also suggests that to reduce D, besides reducing

W, we need to allocate most of the traffic to and from a node

on as few wavelengths as possible.

To determine the lower bound on the number of

wavelengths we will define the term density (d) as the

maximum number of streams on any of the N links. Let link

l be the link between nodes l and (lC1)modN. Then density

dl at link l can be defined as:

dl Z
X

i%l;jOl

nij (1)

Similarly, the density can be defined at a node. Let di

stand for the density at node i, and Ti, Si, and Pi stand for the

number of terminating streams at node i, the number of

starting streams from node i, and the number of streams that

are passing through node i, respectively. Then:

di ZmaxðTi; SiÞCPi (2)

d Zmax
i

di; 1% i%N (3)

The density at a node or link shows that to accommodate

the traffic, we need at least this much bandwidth (in terms of

the number of streams). Therefore, the minimum number of

wavelengths can be determined as:

WLB Z
d

g

� �
(4)

To determine a tight lower bound on the number of

ADMs for non-uniform traffic is, however, quite difficult. In

[10], the authors generalized the work done by [14], by

incorporating the grooming factor, as follows.

DLB Z
XN

iZ1

maxðTi; SiÞ

g

� �
(5)

In [11], the authors proposed an even tighter bound for

circular rings as follows

WLBring Z
XN

iZ1

ðTi CSiKmiÞ (6)

where mi is the size of the maximal matching of the bipartite

graph, constructed at each node, of starting and terminating

streams as vertices, and edges correspond to non-overlap-

ping streams.
3.1. Mapping of a unidirectional ring onto a linear topology

In this subsection we devise an innovative method to map

the unidirectional ring onto the linear topology.

In a unidirectional ring of N nodes, let the nodes be

numbered from 1 to N, starting from any node, in the

direction of communication. Then, the traffic from node i,

where 1!i%N, destined to node j, where j!i, must be

crossing the links between nodes N and j. By adding NK1

dummy nodes to an N node linear topology, we can emulate

the behavior of an N node unidirectional ring. All the traffic

sourced by i and destined to j, for j!i and iO1, on a

unidirectional link, will now be terminating at node NCj.

In Fig. 3, a simple five-node unidirectional ring is shown.

Also the unfolding of the ring into a linear topology is

depicted. Nodes 6, 7, 8, and 9 (also represented as 1 0, 2 0, 3 0,

and 4 0, respectively) are the added dummy nodes, which

correspond to nodes 1, 2, 3, and 4, respectively. Traffic

sourcing from a node and destined to a lower indexed node

will now terminate at the corresponding added dummy

node. For example, traffic originating at node 4 and

terminating at destination 1, will now terminate at node 6,

as shown in Fig. 3. Once all the traffic is mapped from a

unidirectional ring onto a linear topology, the solutions

developed for the linear topology below will be applicable

to the unidirectional ring too.

3.2. A two-step approach

In this section, we present a two-step approach to solve

the grooming problem on a linear topology. In the first step,

we devise an algorithm MIN-STRINGS that arranges a

number of non-overlapping streams into a string, thus

making strings of streams in such a way that minimizes the

total number of strings. Each string will be formed such that

the space between streams in the same string is minimized.

This algorithm optimally minimizes the number of strings,

which is equivalent to the lower bound on wavelengths. In

the second step, we use a grouping heuristic that groups g
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(or fewer) strings onto each wavelengths. During grouping,

our objective is to group strings together in a manner that

results in reducing the number of the ADMs.
3.2.1. Minimizing the number of strings

In this subsection we present a novel technique that

accommodates the general non-uniform traffic and produces

the least number of strings, equal to the density d, thus

leading to the least number of wavelengths, W for a linear

topology.

To approach the problem in hand, a visualization of the

problem will be helpful. Considering Fig. 2 again we notice

that to compactly pack the traffic streams we can combine

them horizontally as strings such that no two traffic streams

in a string overlap. Formally, GZ(V, E), where V is the set

of nodes and E is the set of edges, is an interval graph

provided that one can assign to each an interval Iv such that

IuhIv is nonempty precisely when u, v2E. Visualizing

each stream as an interval we can then form an interval

graph consisting of all the streams such that, each stream is

represented by a vertex and there is an edge between each

pair of vertices (intervals) that overlaps.

The problem of finding the minimum number of strings is

then equivalent to finding a vertex coloring of the

corresponding interval graph with a minimal number of

colors [15]. The graph coloring problem for general graphs

is NP-Complete [16]. However, for interval graphs we will

present a polynomial time algorithm that is optimal in the

number of colors (in our case each color corresponds to a

string). For further information on interval graphs, coloring
Fig. 4. Algorithm MIN-STRINGS for arrangement o
of interval graphs, and its complexity issues, please consult

[15–17].

Let us represent each stream ckl with a pair of coordinates

(Xmin(ckl), Xmax(ckl)) such that Xmin(ckl)Zk and

Xmax(ckl)Zl. An ith string, Ri, can then be defined as a

set of non-overlapping streams such that its member streams

are not present in Rj, where 1%j%jCj, jsi, and jCj is the

total number of streams. From now on, we will use the terms

stream and segment interchangeably.

Let L represent a sorted list of all the streams cij2C, and

L(i) represent the ith element in the list L. The sorting

criterion is explained in the algorithm itself. Also let us

define an operation REMOVE(L(i)) on list L that removes

L(i) from the list L and hence decrements its size, jLj, by one

(for iR0). The algorithm MIN-STRINGS is then given in

Fig. 4.

The algorithm MIN-STRINGS starts by sorting the

segments in list L in ascending order with respect to their

Xmin coordinate. For segments having the same Xmin

coordinates, longer segments are selected first (for segments

with the same Xmin and length, the tie can be broken

randomly). For each string we repeat the following (lines

3–18). We first initialize each string by the first element in

the sorted list and remove that element from the list (lines

5–8). We then fill the string by searching the whole list, and

accommodating the very first non-overlapping segments

(lines 9–15). This way, in a single scan of the list we will be

able to fill a string with available non-overlapping segments.

The algorithm MIN-STRINGS is simple and elegant and

works for any general non-uniform traffic. Also, it always
f traffic steams onto fewest number of strings.
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finds the optimal (minimum) number of strings, equal to the

density d, as proven by Theorem 1 below. Moreover,

simulation results verify that the algorithm compactly packs

the segments in each string, which means that most of the

segments are connected to each other. This reduces the

number of the ADMs since two connected segments use the

same ADM at their connecting point.

We can determine the complexity of MIN-STRINGS as

follows. For each string, MIN-STRINGS scans the whole

list. As the number of the strings produced by MIN-

STRINGS is equal to the density d, the complexity of the

algorithm is O(d!jCj). If the traffic between different node

pairs is uniformly distributed between zero and some

number h, then on average the total number of segments

between all nodes pairs is (N2!(h/2)), and the complexity

of the MIN-STRINGS can be given as O(d!N2!h).

Before proving the optimality of the MIN-STRING

algorithm, we will define a few terms, followed by lemmas

that are required for the proof.

Let nodes be numbered 1,2,.,N, and the links be

numbered 1,2,.,NK1, such that link i is between nodes i

and iC1. LetU be the set of all given segments, i.e.UZ{a1,

a2,.,ajCj}. Let jj be a set that consists of segment aj and all

segments that overlap with aj and starts earlier than or at the

same node as aj, i.e.jjZ fxjxj2Uo ðXminðxÞÞ%XminðajÞÞ
Strings obtained by MIN-STRINGS

1 2

10
11 12

5
6

87

9

9
6 7

5
8

1210

11

9
6
7
8
5

4
3
1
2

1
2

4
3

4
3

2
1

d = 4 d d = 7

Traffic demands

Traffic demands after sorting

(a)

(b)

(c)

Fig. 5. Output of the MIN-STRINGS algorith
oðXmaxðxÞOXminðajÞÞg. Let pi be a set defined as,

piZ fjmjsupXminðamÞ%i!XmaxðamÞ
mg. Basically, if a segment am

starts at node i, then piZjm. If no segment starts at node i

then we will select such a segment am, which passes through

node (link) i, and its starting point is closest to node i among

all the segments passing through node (link) i. pi will then

consist of segment am and all the segments that overlap with

am. Note that if no segment passes through link i, then pi will

be empty. Finally, letP be a sequence of setspi, i.e.PZ(p1,

p2,.,pNK1).

The following lemmas are needed for the proof of the

theorem.

See Lemma 1 in Appendix

See Corollary in Appendix.

See Lemma 2 in Appendix.

The following theorem is the main result.

See Theorem 1 in Appendix.

Fig. 5 shows the output of MIN-STRINGS for a sample

input. The traffic demands are shown in Fig. 5(a). Each

segment corresponds to a single traffic unit. Fig. 5(b) shows

the demands after sorting. Notice that longer segments

precede shorter segments when their Xmin coordinates are

same. Fig. 5(c) shows the output of MIN-STRINGS. Notice

that the number of strings is exactly equal to the density,

which is 8 in this case.
3 4 5

13
14

13
14

11

13
14

12
10

d = 8= 7 d = 6

m for a sample set of traffic demands.
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Please note that on a unidirectional ring, the segments

between original nodes and the added dummy nodes could

be overlapping. Any segment crossing the link between

nodes i and iC1, for 1%i%N, overlaps with any segment

crossing the link between nodes NCi and NCiC1. For

example, from Fig. 3(b) it appears that segments A and C

can be combined in a string. However, they are overlapping

segments. The links between nodes 6 and 8 are the same as

the links between nodes 1 and 3. Therefore, we need to

modify a few expressions for unidirectional ring. Let di,iC1

be the density of the link between nodes i and iC1. For a

unidirectional ring, di,iC1 can be defined as:

di;iC1 Z
Xi

kZ1

XN

lZiC1

nkl C
XN

kZiC2

XkK1

lZiC1

nkl (7)

The first term includes all the sources before and

including node i, and the destinations after and including

node iC1. The second term considers all the sources k

between iC2 and N that are transmitting the traffic either to

node iC1, or to nodes after iC1 but before node k.

Similarly, we need to make few minor modifications in

the algorithm MIN-STRINGS. While packing each string

we need to select only non-overlapping segments. There-

fore, besides checking the condition, Xmax(A)%Xmin(B)

(line 11 in MIN-STRINGS), we also need to check Xmin(A)

RXmax 0(B), where Xmax 0(B) is defined as:

Xmax0ðBÞZ
0; 1%X maxðBÞ%N

X maxðBÞmod N; X maxðBÞON

(

Note that enforcing the above constraint will take into

account the actual physical capacity of a node. Basically,

here we aremaking sure that each string consists of only non-

overlapping segments. Later, in a grouping algorithmwewill

combine at most ‘g’ number of such strings per wavelength,

thus never exceeding the physical capacity of a node.

The number of strings determined by MIN-STRINGS in

this case, will not necessarily be equal to the density. In fact,

the problem of finding minimum number of strings in rings

can be reduced to a circular-arc coloring problem [11], which

is an NP-Complete problem [16]. The experimental results,

however, show that the number of strings determined by

MIN-STRINGS even in this case is quite close to the density.

Note that we are opening up the ring at a particular node only.

Opening the ring at different locations can affect the results of

MIN-STRINGS. The distribution of the traffic between

actual node and its dummy node could also affect the total

number of strings determined by MIN-STRINGS. For

example, in Fig. 3, out of a total of h streams, say, between

nodes 2 and 4, a fraction of traffic streams can be allocated

between nodes 7 and 9, thus influencing the output of MIN-

STRINGS. One of the possibility is to open the ring at each

node, each time extending the ring as explained above, and

selecting the best solution. However, this will increase the
complexity of the technique by an order ofN. In Section 5,we

will examine the trade-off between number of ADMs and the

corresponding time complexity of the heuristic, for the

unidirectional ring.
3.2.2. Grouping algorithm

By now we have the set of strings, R, of size jRj. In this

subsection we will combine the jRj strings to obtain W

wavelengths, as given by equation [4]. Also while

combining the strings, our objective will be to minimize D.

Before presenting the algorithm for grouping we define a

few terms. Let us define SRi
as the set of node points for

which string i needs an ADM. In general each segment

needs an ADM at its Xmin and Xmax positions. However,

two connected segments on the same string can share a

single ADM, because Xmax of one of the segments is the

same as Xmin of the other segment. Please also note that in

the mapped linear topology having any Xmin or Xmax at

node i (1%i%N) is equivalent to having it on node NCi,

and vice versa. We also define a saving function between

strings i and j as:

SavingðRi;RjÞZ jSRi
hSRj

j (8)

So the saving of two strings depends on the number of

node points, where both strings need an ADM due to the

overlap of their component segments’ endpoints (Xmin

and/or Xmax). Maximizing the saving function increases the

sharing of ADMs, resulting in fewer ADMs. Also we define

an operationMERGE on any two stringsRi andRj as follows:

MERGEðRi;RjÞhSRi
)SRi

gSRj
(9)

Thus, the MERGE operation basically superimposes

those node points of a string onto another where an ADM

is needed. Let the list L now include all the elements of the set

of strings R in the order of their creation by MIN-STRINGS.

The grouping algorithm given in Fig. 6 is then executed.

The algorithm GROUPING starts with a list consisting of

all the elements of the set R. Each wavelength is initialized

with the very first string in the list L (line 6). The added

string is removed from L (line 8). Next, such a string is

selected from all the remaining strings that has maximum

common node points, thus maximizing the saving (line 11).

The largest value of saving, corresponding to a pair of

strings, indicates that grouping these strings together in a

wavelength will lead to sharing the largest number of

ADMs. The selected string is then merged with the

previously selected strings on the same wavelength

(line 13). For each wavelength we group g strings. However,

note that the number of strings selected for the Wth

wavelength may be fewer than g. The number of ADMs

required for each wavelength is then the number of Xmin

and Xmax points over all the segments in the wavelength,

while excluding the multiplicity of common node points.

Note that we are allowing traffic between same pair of nodes

to be allocated to different wavelengths.



Fig. 6. Algorithm to group the strings obtained by MIN-STRINGS into W wavelengths while minimizing the number of the required ADMs.
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The complexity of the algorithm GROUPING is O(jRj2).

For the linear topology, jRjZd, and hence the complexity

for linear topology can be expressed as O(d2). As jRj is

upper bounded by the total number of segments N!(h/2)

(an extreme case when each string has just one segment),

hence the dominant factor in the overall complexity of the

two-step approach comes from MIN-STRINGS that is

O(d!N2!h).
4. Traffic grooming on bidirectional rings

In this section, we show how to groom the non-uniform

traffic on a bidirectional ring by mapping it onto

unidirectional rings, which in turn will be mapped onto

the linear topology. Also, we explore two segment routing

options, namely, when the segments are routed using the

shortest path, and when the route is not fixed and thus may

or may not follow the shortest path route.

We first start with the shortest path approach. First, note

that similar to the case of the unidirectional ring, the linear

topology can also emulate a bidirectional ring by adding

some dummy nodes. However, this time the number of

added dummy nodes is just N
2

� �
. The allocation of the traffic

streams, between source s and destination d, to the extended

linear topology then can be explained as follows. When (dO
s), we will schedule the traffic from s to d if (dKs!(N/2))

and from sC(N/2) to d if (dKsO(N/2)). In case when ((dK
s)!(N/2))), we will split the traffic into two halves, and

assign each half from s to d and from sC(N/2) to d. Also in

case when (d!s) and ((dKs)O(N/2))) we will route the

traffic from s to dC(N/2). Note, however, that above
assignment on a single ring can lead to segments in both

directions. Applying MIN-STRINGS may result in com-

bining opposite direction segments into a string, thus

implying that a bidirectional ADM (on a single wavelength)

exists. To avoid such an assumptions and to consider ADMs

that operate only in one direction, we need to modify our

model. One of necessary update is to consider that each

wavelength can contain streams flowing in one direction

only. Groups of such g wavelengths then can be assigned to

two different fibers (in case of unidirectional fiber) or to

same fiber (in case of bidirectional fiber). Let the total traffic

on a bidirectional ring be split between two unidirectional

rings A and B. Also, let the corresponding extended linear

topology, of ring A and B be represented as L(A) and L(B),

respectively. The assignment of traffic to L(A) and L(B) can

then be carried out as explained in algorithm ASSIGN-

MENT, given in Fig. 7.

Algorithm ASSIGNMENT is self-explanatory. Fig. 8

shows how the traffic can be split between two different

rings. Also it depicts the assignment of the traffic on

corresponding extended linear topologies. The generality of

the above mentioned assignment strategy is evident by

noting that we are able to handle both symmetric and

asymmetric traffic, and are still able to use the same

heuristics that we developed for the extended linear

topology for unidirectional ring.
4.1. Non-shortest path routing

In this section, we will explore non-shortest path routing

to reduce the number of the wavelengths and the ADMs.

The above mentioned assignment algorithm uses the



Fig. 7. Algorithm for assignment of segments on two unidirectional rings to

emulate a bidirectional ring.
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shortest path to route the traffic between different source

destination pairs. However, shortest path may not always

lead to the least number of the wavelengths and the ADMs.

This can be best illustrated with the help of an example.
1 2 3 4

1 2 3 4

L(A)

L(B)

5

4

1

2

3

5

4

(a) (b)

(d)

(e)

Fig. 8. Conversion of a bidirectional ring into linear topology. bN/2c nodes are add

shows how traffic in (a) can be split between between two unidirectional rings. M
In Fig. 9, two ring A and B are shown. Suppose g in this case

is 3. Density d of ring A currently is 2 while that of ring B is

3. Currently the number of ADMs required on each ring is

also 3. Suppose we need to route a traffic stream originating

from node 2 and terminating at node 1. Using shortest path

routing we will end up selecting ring B. However, this will

not only increment the number of required wavelengths for

ring B but also needs two more ADMs. On the other hand, if

we choose the longer route on ring A, the already present

ADMs will be sufficient to accommodate the stream. This

example clearly illustrates that there could arise situations

where using shortest path routing does not lead to the

minimum number of the wavelengths and the ADMs.

Hence, to address this issue in the following we will develop

an algorithm, TRAFFIC-SHIFTING, that uses three

different criteria to relax the shortest path routing restriction,

and is given in Fig. 10.

In general, we will first assign all the traffic streams on

L(A) and L(B) using shortest path. After that we will

repeatedly select the ring with larger density and check each

of the non-locked segments passing through its maximum

density link, selecting the longest segment first. The selected

segment is then checked for its eligibility to move to the

other ring using CRITERION 1, 2 or 3. In case the shifting

of segment is approved, the segment is shifted (now being

routed over longer path) and is locked to prohibit any further

shifting (to avoid cycles). Note that, to be able to predict

exactly that a shifting of the segment from L(P) to L(Q) will

lead to the reduced number of the ADMs, we need to

determine the corresponding wavelengths of all other

segments. Due to our two step approach, however, we do

not determine the corresponding wavelengths before routing
5 6 7

5 6 7

1' 2'

1' 2'

1

2

3

1

2

3

5

4

(c)

ed as dummy nodes. In (a) a sample traffic set is shown, while (b) and (c)

apping of rings in (b) and (c) is shown in (d) and (e), respectively.
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Fig. 9. Example to illustrate that the shortest path routing does not

necessarily gives the minimum number of the wavelengths and ADMs.
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all of the segments. Hence, at this stage our approach tries to

reduces the total number of strings on each ring in a manner

that will not lead to an increment in the number of ADMs.

The three criteria used in algorithm TRAFFIC-SHIFTING

are explained below.

CRITERION 1 Approve the segment if d(Q) is not an

integral multiple of g, else try CRI-

TERION 2.

CRITERION 2 Approve the segment if d(P)Od(Q), else

try CRITERION 3.

CRITERION 3 Approve the segment if shifting the

segment from L(P) to L(Q) does not

increase d(Q).

The intuition behind CRITERION 1 is that if d(Q) is not

an integral multiple of g then some space will be left in at

least one of the wavelengths of ring Q, and hence we can

utilize it by placing a segment in it, while potentially

decreasing the number of strings from the ring P.

CRITERION 2 tries to balance the difference of densities

(and hence number of strings) between both rings. Finally
Fig. 10. Algorithm for traffic shifting from shortest path to l
CRITERION 3, shifts the segment from one ring to another

only if such a move does not increase the density of either of

the two rings. And hence potentially decreasing the number

of strings from both the rings, P and Q, but not at the

expense of ring P. Note that using CRITERION 3 fewer

segments will be allowed to shift as compared to

CRITERION 2 and CRITERION 1. Similarly CRITERION

2 is more restrictive than CRITERION 1.
5. Experimental results

In this section, we will present the results of applying the

techniques proposed in Sections 3 and 4 to various networks

with different topologies and parameters. We are more

interested in conducting experiments with non-uniform and

asymmetric traffic, because uniform traffic can be con-

sidered as a special case of general arbitrary traffic.

We divided the experiments into three suites, corre-

sponding to unidirectional topologies, bidirectional topolo-

gies, and the comparison with other similar work reported in

the literature, respectively. The following parameters were

used for the experiments in suite 1 and 2. The number of

nodes N were varied from 5 to 25 with an increment of 5.

The value of the grooming factor, g, was assigned to 1, 4, 8,

and 16 in each of these experiments. Assuming that our

basic data stream is an OC-3, these values of g then

correspond to OC-3, OC-12, OC-24, and OC-48,

respectively.

For each of the network topologies, between different

node pairs (i, j), we generated a set of traffic streams cij

whose cardinality is taken from an integer uniform

distribution in the closed interval [0, g]. Each reported

result is an average value obtained by running 30 batches of
onger path, to reduce the number of required ADMs.
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30 runs each. The confidence intervals were computed, but

are not shown here.

Experiments in suite 1 were conducted on unidirectional

rings. Fig. 11 shows the number of the ADMs required for a

unidirectional ring, for different values of g. Note that when

gZ1, there will be no traffic grooming, because each basic

stream will occupy the whole wavelength between source

and destination nodes. Fig. 12 compares the number of the

wavelengths determined by MIN-STRINGS for a uni-

directional ring, and the corresponding lower bound on the

number of the wavelengths, i.e. density, when gZ8. From

Fig. 12, it is evident that the number of the wavelengths

determined by MIN-STRINGS is exactly equal to lower

bound when the problem size is small (for example, when

number of nodes are 5 and 10), and slightly exceeds the

lower bound when the problem size increases. In Section 3,

we discussed the time-cost tradeoff in opening the ring at

single or multiple nodes. Fig. 13 shows the savings in the

number of the ADMs that can be obtained by opening the

unidirectional ring at each of the N nodes and selecting

the best solution. The saving in the number of the ADMs

increases when the problem size increases (and so does the

computing time). On average we are able to save 5–10

ADMs by opening it at each of the N nodes and selecting the

best solution. Given that a single port SONET ADM costs
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Fig. 12. Number of the wavelengths and the corresponding lower bound for

a unidirectional ring.
$40,000 or more, this saving could mean a total saving of

$200,000–$400,000. On the other hand by opening the ring

at each of the N nodes, the time complexity increases by a

factor of N. However, the run time of our technique allows

one to afford this additional computation to save large

amounts of money while designing WDM networks. For

example, the real time taken by the program, for NZ20 and

gZ8, was 0.62 and 5.2 s when it was opened at node zero

and when it was opened at each of N nodes, respectively.

Similarly, the real time taken by the program for the above

mentioned two options was 2.71 and 21.7 s when gZ16.

Comparison of our results with other proposed techniques,

e.g. [12] reveals that with far less complexity (at least an

order of N) we have achieved either less or comparable costs

in terms of the number of the ADMs.

For all of the above experiments the amount of the traffic

generated between each node pair is related to the grooming

factor (the traffic generated for each node pair is an integer

uniformly distributed in the closed interval [0, g]). We also

conducted experiments to study the effect of the different

grooming factors while using the same input traffic

matrices. For these experiments, the traffic generated for

each node pair is an integer uniformly distributed in the

closed interval [0,16]. The results are collected for gZ4 and

gZ8. Figs. 14 and 15 show the number of the ADMs and

the number of the wavelengths required to accommodate the

input traffic, respectively. Note that the number of the

wavelengths required for gZ8 are almost exactly half of

that required for gZ4, while the number of the ADMs

required for gZ8 are close to half of that required for gZ4.

This shows that our two-step approach is scalable with the

grooming factor.

In the case of rings even the first step of our two-step

technique, i.e. minimizing the number of strings, is

NP-Complete. Therefore, to compare the performance of

MIN-STRINGS, in this case, we compared the results MIN-

STRINGS with the results given in [11]. In Ref. [11], the

authors solved the wavelength assignment problem inWDM

ringswhileminimizing the number ofADMs. They proposed
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Table 1

Average ADM saving for unidirectional rings by MIN-STRINGS versus

MAF, IMat, and IMer

Min-strings MAF IMat IMer

Avg ADM saving 76 25 31 35

Improvement1 – 204% 145% 117%

Improvement2 8% 224% 161% 131%
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three heuristics, namely, Modified Assign First (MAF),

Iterative Matching (IMat) and Iterative Merging (IMer), and

presented theADM savings over 200 experiments.Whenever

two segments shared a common node this was counted as an

ADM saving. Table 1, compares the performance of MIN-

STRINGS to the MAF, IMat, and IMer heuristics, for the

same network setup (NZ16, and number of streams

generated randomly between 16 and 256). On average, our

proposed MIN-STRINGS algorithm performed 204, 145,

and 117% better than MAF, IMat, and IMer, respectively,

which is shown by Improvement1 in Table 1. We also

experimented by opening the ring at each of the N nodes, and

selecting the best solution. This introduced an improvement

over our initial solution which is about 8% (shown in Table 1

as Improvement2). This translates into a further improve-

ment of 20, 16, and 14%, over MAF, IMat, and IMer,

respectively.

Suite 2 consists of experiments for bidirectional rings.

Fig. 16 shows the number of the ADMs required for a

bidirectional ring, using shortest path and TRAFFIC-

SHIFTING algorithm, when gZ16. Note that the results

were collected for the TRAFFIC-SHIFTING algorithm with

all three different criteria, namely, CRITERION 1 (C1),

CRITERION 2 (C2), and CRITERION 3 (C3). From the
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for the experiments with gZ4 and 8.
figure, it is evident that we can improve on the shortest path

approach by relaxing the shortest path constraint. Also both

C1 and C2 perform better than C3, because they have more

flexibility in shifting the traffic streams from shortest path

routes to other routes. Table 2 shows the saving in the

number of ADMs obtained by using C1, C2, and C3 over the

shortest path routing (C0) option, when gZ8. Using either

C1 or C2, for large problem sizes we were able to save 74

ADMs. On average, criteria C1, C2 and C3 saved 36.1, 35.6,

and 6.2 ADMs, respectively, over shortest path option.

Using $40,000 as the price for a single port SONET ADM,

this saving translates into 1.44 million, 1.42 million, and

0.24 million dollars, respectively.

Suite 3 consists of experiments conducted to compare the

similar work done by authors in Ref. [12]. We selected the

same parameters as reported in [12] to be able to make

meaningful comparisons. We will report four different

experiments. Since the authors in [12] provided many

results for uniform traffic, in Fig. 17 we compared the

performance of our algorithms for gZ4 and a uniform

traffic of three units between randomly selected node pairs,

on a unidirectional ring. We used both variations: opening

the ring at a single link (Single open), and opening the ring

at each of the N links and selecting the best results (N open).

However, in this case both variations yield the same results.

We attribute this to the uniform nature of the traffic between

different node pairs. Fig. 17 shows the number of ADMs

saved by using our algorithms over that of reported in Ref.

[12]. Keeping in mind that each ADM costs thousand of

dollars the saving in the number of ADMs is substantial. For

second experiment we generated a non-uniform traffic in the

closed interval [0,5] for a unidirectional ring. Fig. 18 shows
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Table 2

Saving in number of ADMs using TRAFFIC-SHIFTING algorithm for

bidirectional ring when gZ8

N C0–C1 C0–C2 C0–C3

10 5.7 6 0.5

15 18.4 17.2 1.4

20 46.5 45.3 9.4

25 74 74 13.8
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Fig. 19. Saving percentage in ADMs, with non-uniform traffic, gZ8 and 16,

on a unidirectional ring.
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the results when gZ4. We notice that the performance of

our algorithms increase over that reported in [12], when

non-uniform traffic is considered. Also, opening the ring at

each of the N links, though increases the complexity, saves

substantial number of ADMs while accommodating the very

same traffic. The third experiment is also conducted on a

unidirectional ring. Non-uniform traffic is generated in the

closed interval [0,5]. However, grooming factors of 8 and 16

are considered. We computed the Saving Percentage in

ADMs, as defined in Ref. [12], SZ ðN:WKDÞ=ðN:WÞ, where

as D was defined earlier as the total number of SONET
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ADMs required to accommodate the traffic. Fig. 19 shows

that for both gZ8 and 16 in most of the cases the saving

percentage of ADMs generated by our algorithms is more

than that reported in Ref. [12]. Finally, the fourth

experiment is conducted on a bidirectional ring. Grooming

factors of 8 and 16 are considered and a non-uniform traffic

is generated in the closed interval [0,5]. Once again results,

shown in Fig. 20, illustrate that in most of the cases the

saving percentage of ADMs obtained by our algorithms is

more than that reported in Ref. [12]. Thus this suite of

experiments demonstrates that our proposed algorithms can

generate cost-effective solutions in less, or at most equal,

computation complexity.
6. Conclusions

In this paper, we address the grooming of the non-uniform

traffic on unidirectional and bidirectional rings. We map the

unidirectional rings onto a linear topology, and then develop

a two-step approach to solve the grooming problem, while
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minimizing the number of the wavelengths and the ADMs,

for the mapped topologies. For the first step, an algorithm

MIN-STRINGS is developed that produces the optimal

(minimum) number of strings on a linear topology, while

compacting each stringwith traffic streams. Optimality of the

algorithm is proven. For the second step, an effective

heuristic is designed to group g strings for each wavelength

such that the number of the ADMs used per wavelength are

minimized. Also, the bidirectional rings are mapped onto

unidirectional rings and the two-step approach is used.

Moreover, a study is conducted on routing strategies for

bidirectional rings to minimize the number of the required

wavelengths and ADMs. Few approaches are proposed that

lead to considerable reduction in the number of the required

wavelengths andADMs. Finally, the efficacy of the proposed

techniques is demonstrated using a large set of experiments.
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Appendix A

Lemma 1. jjjj%d for 1%j%jCj

Proof. jjjjOd implies that at some link, say l, where lZ
Xmin(aj), the number of segments traversing the link is greater

than d, which contradicts the definition of d. Hence jjjj%d.

Corollary. jpij%d for 1%i%NK1

Proof. By definition, piZjm for 1%m%jCj, or piZf. How-
ever, from Lemma 1 we have jjmj%d. Hence, jpij%d.,

Lemma 2. In each iteration, k, of the MIN-STRINGS

algorithm (lines 3–18, Fig. 4), exactly one member of each

nonempty pi, 1%i%NK1, will be selected for inclusion in

string k.

Proof. As MIN-STRINGS first sorts all the segments in

ascending order with respect to their Xmin coordinates, in

each iteration k (lines 3–18, Fig. 4), the sequence P will be

inspected in order, and if the element, pi, is not empty then:

(a) Either the segment that was chosen in the previous

nonempty element, pj, is not a member of pi, and

therefore does not overlapwith themembers inpi. In this

case, a new segment in pi can be chosen for inclusion in

the string, and will be removed from set pi. Or,

(b) the segment, ak, that was last chosen from the previous

non-empty member, pj, is also a member of pi, and will

also be removed from pi.,

In both cases, the size of all the nonempty sets, pi, which

are members of the sequence L, will be reduced by 1.

Theorem 1. MIN-STRINGS algorithm is optimal in the

number of strings.
Proof. As d is the lower bound on the number of strings, we

will prove that the number of strings obtained by MIN-

STRINGS algorithm is equal to d, i.e. jRjZd, and is

therefore optimal. Since jpij%d, 1%i%(NK1), then by

Lemma 2, in d or less iterations we will be able to select all

the segments ak2pi, for the strings. Let k* be the link with

density d. Then jpk* jZd. Hence the total number of

iterations required to select all the segments is d. Since each

iteration corresponds to a string, then jRjZd. ,
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